首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18798篇
  免费   1556篇
  国内免费   1644篇
  2024年   27篇
  2023年   274篇
  2022年   392篇
  2021年   627篇
  2020年   552篇
  2019年   850篇
  2018年   795篇
  2017年   475篇
  2016年   534篇
  2015年   701篇
  2014年   1285篇
  2013年   1386篇
  2012年   918篇
  2011年   1261篇
  2010年   929篇
  2009年   988篇
  2008年   988篇
  2007年   1116篇
  2006年   966篇
  2005年   854篇
  2004年   715篇
  2003年   593篇
  2002年   578篇
  2001年   369篇
  2000年   351篇
  1999年   301篇
  1998年   321篇
  1997年   236篇
  1996年   243篇
  1995年   285篇
  1994年   219篇
  1993年   198篇
  1992年   190篇
  1991年   170篇
  1990年   141篇
  1989年   116篇
  1988年   112篇
  1987年   94篇
  1986年   62篇
  1985年   107篇
  1984年   155篇
  1983年   120篇
  1982年   135篇
  1981年   59篇
  1980年   52篇
  1979年   51篇
  1978年   40篇
  1977年   19篇
  1976年   13篇
  1974年   11篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
91.
The TGF-β1-Smad pathway is a well-known negative regulator of muscle growth; however, its potential role in resistance training-induced muscle hypertrophy is not clear. The present study proposed to determine whether and how this pathway may be involved in resistance training-induced muscle hypertrophy. Skeletal muscle samples were collected from the control, trained (RT), control + SB431542 (CITGF), and trained + SB431542 (RTITGF) animals following 3, 5, and 8 weeks of resistance training. Inhibition of the TGF-β1-Smad pathway by SB431542 augmented muscle satellite cells activation, upregulated Akt/mTOR/S6K1 pathway, and attenuated FOXO1 and FOXO3a expression in the CITGF group (all p < .01), thereby causing significant muscle hypertrophy in animals from the CITGF. Resistance training significantly decreased muscle TGF-β1 expression and Smad3 (P-Smad3S423/425) phosphorylation at COOH-terminal residues, augmented Smad2 (P-Smad2-LS245/250/255) and Smad3 (P-Smad3-LSer208) phosphorylation levels at linker sites (all p < .01), and led to a muscle hypertrophy which was unaffected by SB431542, suggesting that the TGF-β1-Smad signaling pathway is involved in resistance training-induced muscle hypertrophy. The effects of inhibiting the TGF-β1-Smad signaling pathway were not additive to the resistance training effects on FOXO1 and FOXO3a expression, muscle satellite cells activation, and the Akt/mTOR/S6K1 pathway. Resistance training effect of satellite cell differentiation was independent of the TGF-β1-Smad signaling pathway. These results suggested that the effect of the TGF-β1-Smad signaling pathway on resistance training-induced muscle hypertrophy can be attributed mainly to its diminished inhibitory effects on satellite cell activation and protein synthesis. Suppressed P-Smad3S423/425 and enhanced P-Smad2-LS245/250/255 and P-Smad3-LSer208 are the molecular mechanisms that link the TGF-β1-Smad signaling pathway to resistance training-induced muscle hypertrophy.  相似文献   
92.
An essential protein for bacterial growth, GTPase‐Obg (Obg), is known to play an unknown but crucial role in stress response as its expression increases in Mycobacterium under stress conditions. It is well reported that Obg interacts with anti‐sigma‐F factor Usfx; however, a detailed analysis and structural characterization of their physical interaction remain undone. In view of above‐mentioned points, this study was conceptualized for performing binding analysis and structural characterization of Obg‐Usfx interaction. The binding studies were performed by surface plasmon resonance, while in silico docking analysis was done to identify crucial residues responsible for Obg‐Usfx interaction. Surface plasmon resonance results clearly suggest that N‐terminal and G domains of Obg mainly contribute to Usfx binding. Also, binding constants display strong affinity that was further evident by intermolecular hydrogen bonds and hydrophobic interactions in the predicted complex. Strong interaction between Obg and Usfx supports the view that Obg plays an important role in stress response, essentially required for Mycobacterium survival. As concluded by various studies that Obg is crucial for Mycobacterium survival under stress, this structural information may help us in designing novel and potential inhibitors against resistant Mycobacterium strains.  相似文献   
93.
Salt-sensitive hypertension is a major risk factor for renal impairment leading to chronic kidney disease. High-salt diet leads to hypertonic skin interstitial volume retention enhancing the activation of the tonicity-responsive enhancer-binding protein (TonEBP) within macrophages leading to vascular endothelial growth factor C (VEGF-C) secretion and NOS3 modulation. This promotes skin lymphangiogenesis and blood pressure regulation. Whether VEGF-C administration enhances renal and skin lymphangiogenesis and attenuates renal damage in salt-sensitive hypertension remains to be elucidated. Hypertension was induced in BALB/c mice by a high-salt diet. VEGF-C was administered subcutaneously to high-salt-treated mice as well as control animals. Analyses of kidney injury, inflammation, fibrosis, and biochemical markers were performed in vivo. VEGF-C reduced plasma inflammatory markers in salt-treated mice. In addition, VEGF-C exhibited a renal anti-inflammatory effect with the induction of macrophage M2 phenotype, followed by reductions in interstitial fibrosis. Antioxidant enzymes within the kidney as well as urinary RNA/DNA damage markers were all revelatory of abolished oxidative stress under VEGF-C. Furthermore, VEGF-C decreased the urinary albumin/creatinine ratio and blood pressure as well as glomerular and tubular damages. These improvements were associated with enhanced TonEBP, NOS3, and lymphangiogenesis within the kidney and skin. Our data show that VEGF-C administration plays a major role in preserving renal histology and reducing blood pressure. VEGF-C might constitute an interesting potential therapeutic target for improving renal remodeling in salt-sensitive hypertension.  相似文献   
94.
《Developmental cell》2023,58(5):348-360.e6
  1. Download : Download high-res image (183KB)
  2. Download : Download full-size image
  相似文献   
95.
Measuring the effect of observations on Bayes factors   总被引:2,自引:0,他引:2  
PETTIT  L. I.; YOUNG  K. D. S. 《Biometrika》1990,77(3):455-466
  相似文献   
96.
97.
Despite the fact that long noncoding RNAs (lncRNAs) play roles in almost all biological processes, little is known about their biological function in the endometrium during the formation of endometrial receptivity. In this study, a comprehensive analysis of lncRNAs in goat endometrial tissues on Day 5 (prereceptive endometrium, PE) and Day 15 (receptive endometrium, RE) of pregnancy was performed by using RNA-Seq. As a result, 668 differentially expressed lncRNAs (DELs) were found between the PE and RE. Further study showed that lncRNA882, regulated by estrogen (E2) and progestin (P4), could act as competing endogenous RNAs (ceRNAs) for miR-15b, which inhibited the expression of transforming growth factor-b-activated kinase 1 binding protein 3 (TAB3) and then indirectly regulated the level of leukemia inhibitory factor (LIF). This was helpful for the formation of endometrial receptivity in dairy goats. In conclusion, we elucidated the endometrium lncRNA profiles of PE and RE in dairy goats; lncRNA882 acted as a ceRNA for miR-15b and then indirectly regulated the level of LIF in goat endometrial epithelium cells. Thus, this study helped us to better understand the molecular regulation of endometrial receptivity in dairy goats.  相似文献   
98.
Abnormal expression of various microRNAs (miRNAs), as regulators of biological signaling pathways, has a strong association with cancer resistance to chemotherapy and radiotherapy. The let-7 family of miRNAs as tumor suppressors have shown to be downregulated in different types of human malignancies including colorectal cancer (CRC). However, the biological function of let-7 members in the processes of resistance to radiation in CRC has not yet been completely elucidated. Insulin-like growth factor 1 receptor (IGF-1R) signaling pathway is amplified in CRC and leads to its progression, development, and also radiation resistance. So, it seems like an attractive target for anticancer therapy. In this study, by using bioinformatics analysis, it has been revealed that IGF-1R is a direct target of the let-7e member. Consistent with this, we identified that increased levels of let-7e in CRC cells reduced IGF-1R protein level and subsequently its downstream signaling pathways, which resulted in the G1 cell cycle arrest and a significant reduction in the proliferation, survival and also resistance to radiation of CRC cells. Altogether, these results suggested that let-7e by targeting the IGF-1R signaling pathway might serve as therapeutics in anticancer therapy.  相似文献   
99.
便携多路环境数据采集系统   总被引:2,自引:0,他引:2  
便携多路环境数据采集系统姜仕仁,常杰,葛滢(杭州大学生物科学与技术系,310012)APortableMulti-PassageEnvironmentalDataAuto-SamplingSystem.¥JiangShiren;ChangJie;Ge...  相似文献   
100.
Receptor tyrosine kinases (RTKs) are single-span transmembrane receptors in which relatively conserved intracellular kinase domains are coupled to divergent extracellular modules. The extracellular domains initiate receptor signaling upon binding to either soluble or membrane-embedded ligands. The diversity of extracellular domain structures allows for coupling of many unique signaling inputs to intracellular tyrosine phosphorylation. The combinatorial power of this receptor system is further increased by the fact that multiple ligands can typically interact with the same receptor. Such ligands often act as biased agonists and initiate distinct signaling responses via activation of the same receptor. Mechanisms behind such biased agonism are largely unknown for RTKs, especially at the level of receptor–ligand complex structure. Using recent progress in understanding the structures of active RTK signaling units, we discuss selected mechanisms by which ligands couple receptor activation to distinct signaling outputs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号